Xast time we saw:

$$X_A = -\frac{1}{4}g_{AB}F_{MV}^A F_{ANV}^{ANV}$$

where g_{AB} satisfies
 $g_{AB}C_{TS}^A = -g_{YS}C_{AB}^A$ (4)
and g_{AB} positive-definite
Theorem 1:
 \Rightarrow Xie algebra is direct sum of commuting
compact simple and U(1) subalgebras (**)
Such Xie algebras have Hermitian generates t_X
Such Xie algebras have Hermitian generates t_X
Set: $g_{AB} = Tr \{t_A t_B\}$
 \rightarrow is positive-definite since $g_{AB}u^A u^B = Tr \{(u^A t_B)^2\} \ge 0$
 $\downarrow u^A \in \mathbb{R}$ and vanishes only if $u^A t_A = 0$
(recall t_A are hermitian: $t_A^A = t_A^A$)
Also condition (*) is satisfied:
 $iC_{AB}^{Y} = Tr \{t_A, t_B\} = Tr \{t_B t_B t_B - t_B t_B t_B\}$
 \rightarrow anti-symmetric in p and S .
Theorem 1 \Rightarrow (**)
In dimension 3 an example of this is the
 $SU(2)$ Xie algebra: $[t_A, t_B] = iE_{AB} t_B$

Theorem 2:
(*) implies
$$g_{ma, ub} = g_{m}^{-2} h_{un} \delta_{ab}$$

where the notation implies that the
Xie algebra of is a direct sum
 $of = \bigoplus of_{m}$
 f_{ma} f_{ma} f_{ma}
 $f_{ma} \rightarrow A_{ma} = g_{m}^{-1} A_{ma}^{m}$,
 $f_{ma} \rightarrow f_{ma} = g_{m} f_{ma}$,
 $f_{ma} \rightarrow f_{ma} = g_{m} f_{ma}$,

-> gap = Sap What is then the meaning of gm? It is the "coupling constant" of the gangeth.!

S1.3 Field Equations and Conservation Kons
Full Lagrangian density:

$$X = -\frac{1}{4} F_{KMV} F_{X}^{MV} + \sum_{M} (Y, D, Y)$$

matter Lag. density
Equations of motion:
 $2 \frac{32}{3(2-A_{KV})} = -2\pi F_{X}^{NV} = \frac{32}{3A_{KV}}$
 $= -F_{Y}^{MV} C_{YAS} A_{YSN} - \frac{32M}{3D_{Y}} t_{X} Y$
 $\Rightarrow D_{Y} F_{X}^{MV} = -\tilde{f}_{X}^{MV}$ (1)
where \tilde{f}_{X}^{MV} is the current:
 $\tilde{f}_{X}^{V} = -\tilde{f}_{X}^{MV}$ (1)
where \tilde{f}_{X}^{MV} is conserved:
 $\tilde{f}_{Y}^{MV} = 0$ (2) $\tilde{f}_{X}^{MV} = 0$)
We can also rewrite eq. (1) in terms of
covariant derivatives:
 $D_{Y} F_{X}^{MV} = \partial_{X} F_{X}^{MV} - \frac{1}{2D_{Y}} A_{SS} F_{Y}^{MV}$
 $= \partial_{X} F_{X}^{MV} - C_{YS} A_{SS} F_{Y}^{MV}$

Using $[D_{r}, D_{n}]F_{r}^{\rho\sigma} = -i(t^{A}_{r})_{as}F_{rvn}F_{s}^{\rho\sigma} = -C_{ras}F_{rvn}F_{s}^{\rho\sigma}$ we can see Dr Jr - O We can also derive DuFiva + DuFan + DaFanv = 0 Analogy to GR: $\mathcal{D}_{m} \mathcal{F}_{n} = -\mathcal{T}_{2} \quad \longleftrightarrow \mathcal{R}_{m} - \frac{1}{2} \mathcal{S}_{m} \mathcal{R} = -\mathcal{S}_{m} \mathcal{G} \mathcal{T}_{m}$ 2, T + 0 $D_{n} = -J_{d} = -\left(R_{n} - \frac{1}{2}\partial_{n}R\right) = -b_{T}G_{T}$ where The I the Ren- 1 Show-linear

We have

e have

$$\exists_{r} T = 0$$

 \Rightarrow current of total energy and momentum
 $P_{m} = \int T^{o} d^{3}x$
 T carries purely gravitational term
 \Rightarrow gravitational field carries energy
and momentum

314 Quantization 1 = - 4 Fame Fx + 2 M (4, Dm 4) with Fanv = On Aav - Or Adm + Capar Apr Agr, Dit = Dit - ita Ann 4 Constraints : $(1) \quad \Pi_{do} = \frac{\Im \mathcal{L}}{2 \Im A^{\circ}} = 0$ (2) $\partial_{\mu} \frac{\partial \chi}{\partial (\partial_{\mu} A_{\mu})} + \frac{\partial \chi}{\partial A_{\mu}} = \partial_{\mu} F_{\chi}^{\mu} + F_{\chi}^{\mu} C_{\gamma \alpha \beta} A_{\beta n} + J_{\alpha}^{\mu}$ $= \partial_{\kappa} \Pi_{\chi}^{\kappa} + \Pi_{\gamma}^{\kappa} C_{\gamma \ll p} A_{p\kappa} + J_{\chi}^{\sigma} = 0$ where $\Pi_{\alpha}^{\kappa} = \frac{\partial \mathcal{L}}{\partial (\partial_{\alpha} A_{\alpha} \kappa)} = F_{\alpha}^{\kappa 0}$ with $\kappa = 1, 2, 3$. We deal with these constraints by choosing a gange. -> "axial gauge": Ax3=0 (*) canonical variables for gange field: Axi, i=1,2 canonical momenta: $\overline{\Pi_{xi}} = \frac{\Im Z}{\partial(\partial_{x}A_{xi})} = -\overline{F_{x}}^{oi} = \partial_{o}A_{xo} + C_{xyy}A_{yo}A_{yi}$ Axo is not independent and can be solved for: $F_{d}^{io} = \Pi_{ki}, \quad \overline{F}_{d}^{3o} = \partial_{3}A_{d}^{o}$ (* *)

where
$$M_{M}$$
 is the matter Hamiltonian density:
 $M_{M} = T_{E} \partial_{z} T_{E} - X_{M}$
 \rightarrow path integral over A_{Ei} , T_{Ei} , T_{E} , and T_{E} , with
weighting factor $\exp(iI)$, where
 $I = \int d^{4}x [T_{Ei} \partial_{z} A_{Ei} + T_{E} \partial_{z} Y_{E} - K + E terms]$,
Note: I is a quadratic functional of all fields!
 \rightarrow path integral over Gaussian gives suddle-point.
Treating A_{EO} as an independent variable
gives f_{HE} suddle point:
 $gives$ $back$ constraints (2)
 \rightarrow gives back constraints (2)
 \rightarrow we are allowed to treat A_{EO} as independent
 $in path integral.$
 $Stationary points of action are:
 $O = \frac{SI}{ST_{E}} - \frac{\partial}{\partial Y_{E}} - \frac{\partial}{\partial T_{E}} I_{Ei}$
 $O = \frac{SI}{ST_{E}} - \frac{\partial}{\partial Y_{E}} - \frac{\partial}{\partial T_{E}} I_{Ei}$
 $J = \int dY_{E} - \frac{\partial}{\partial T_{E}} I_{Ei}$.
 $Inserting back gives:
 $I = \int d^{4}x [Z_{H} + \frac{1}{2}F_{EO} F_{EO} - \frac{1}{4}F_{Eij}F_{Eij} - \frac{1}{2}\partial_{z}A_{Ei} \partial_{z} A_{zi} + \frac{1}{2}b_{E} f_{z} f_{z}$$$

= fd⁴x Z
which is our original Zagrangian!
-> We obtain the following path-integral
formula:

$$\langle T \{O_A O_{TS} - \cdot \cdot \} \rangle_{VACUUM} \int [TT d''_{E}(x)] [TT d'A_{KM}(x)]$$

 $\times O_A O_{TS} - \cdot \cdot exp \{iI + \varepsilon terms] TT S(A_{KS}(x))$
-> not manifestly Zorante-invariant !